Chemistry 3830

Molecular Orbital Theory

Molecular Orbitals of $\mathbf{H}_{2}{ }^{+}$

One electron system:

Repulsive

Born-Oppenheimer approximation:

- Electrons are lighter and much (!) faster moving than nuclei.
- Electrons equilibrate fast when nuclei move.
- Nuclei are considered with a fixed distance from each other

Practically: a one-particle system.
Schrödinger's equation can be solved.

Approximate MO Theory

Linear Combination of Atomic Orbitals (LCAO) Method

$$
\Psi=c_{1} \varphi_{1}+c_{2} \varphi_{2}+c_{3} \varphi_{3}+\cdots=\sum_{i=1}^{n} c_{i} \varphi_{i}
$$

1. Symmetry:

- Only AOs of the same/correct symmetry (symmetry species) can interact.

2. Relative Energies

- Only AOs of similar energies will interact.

3. Spatial Extension/Overlap

- AOs must overlap in order to interact.

Valence AOs

- Valence AOs have the right property to interact to form MOs.

Overlap

- Core orbitals are too small to effectively overlap with each other.

- Valence orbitals have the right size to effectively overlap with each other.

$$
\sigma \text { symmetric overlap: }
$$ π symmetric overlap:

$1^{\text {st }}$ Row Diatomics

$1^{\text {st }}$ Row Diatomics

bond order $=1 / 2$ [\# of electrons in bonding MO's - \# of electrons in anti-bonding MO's]

UV/Vis Spectroscopy

б MOs

π and δ MOs

π Bonds

or $p_{y} \quad p_{y}$
but not

