Chemistry 3830

Molecular Orbital Theory

Molecular Orbitals of H₂⁺

One electron system:

Born-Oppenheimer approximation:

- Electrons are lighter and much (!) faster moving than nuclei.
- Electrons equilibrate fast when nuclei move.
- Nuclei are considered with a fixed distance from each other

Practically: a one-particle system.

Schrödinger's equation can be solved.

Approximate MO Theory

Linear Combination of Atomic Orbitals (LCAO) Method

$$\Psi = c_1 \varphi_1 + c_2 \varphi_2 + c_3 \varphi_3 + \dots = \sum_{i=1}^n c_i \varphi_i$$

- 1. Symmetry:
 - Only AOs of the same/correct symmetry (symmetry species) can interact.
- 2. Relative Energies
 - Only AOs of similar energies will interact.
- 3. Spatial Extension/Overlap
 - AOs must overlap in order to interact.

Valence AOs

Valence AOs have the right property to interact to form MOs.

Overlap

Core orbitals are too small to effectively overlap with each other.

- Valence orbitals have the right size to effectively overlap with each other.
 - σ symmetric overlap: π symmetric overlap:

1st Row Diatomics

1st Row Diatomics

bond order = $\frac{1}{2}$ [# of electrons in bonding MO's – # of electrons in anti-bonding MO's]

UV/Vis Spectroscopy

$\sigma \text{ MOs}$

s d_{z^2}

 $-) \bullet (+) +) - +$

π and δ MOs

(dotted line for more distant orbital)